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Stochastic hierarchical model for cluster-cluster aggregation
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A stochastic hierarchical model of cluster-cluster aggregation, which is obtained by introducing a sticking
probability into the recently proposed hierarchical model by Sornsen ar@®®fs. Rev. E58, 7545(1998],
is presented. The fractal dimension and aspect ratio calculated using the model give good agreement with those
obtained in standard simulations of cluster-cluster aggregates. An interesting result is that the fractal dimension
shows a peak as a function of the sticking probabili§1063-651X99)17310-0

PACS numbdss): 61.43.Hv, 81.05.Rm

I. INTRODUCTION tic hierarchical modelSH mode] presented here leads to
several interesting results. | find that the fractal dimension

An important mechanism of forming fractal aggregatesfirst increases and then decreases as the strength of the sto-
that occur in colloid§1] and aerosol§2,3] is cluster-cluster ~chastic element is increased or the sticking probability de-
aggregation_ These aggregates are eas”y generated on a C(ﬁﬁaased. On the other hand, the aspect ratio decreases mono-
puter and are able to explain the observed structures reasoi¢nically as the strength of the stochastic element is
ably well [4-7]. Recently, Sorensen and Q8] have pro- increased. Interestingly, as the fractal dimension first in-
posed a very simple and interesting mo¢®D model for ~ creases and then decreases, and when it has the original
diffusion-limited cluster-cluster aggregatiofDLCA). The Value, the aspect ratio at that time has the value that is closer
model makes several S|mp||fy|ng assumptions that allow fOI{O the correct DLCA value. Thus the stochastic model gives
an analytical calculation of the fractal dimension. The fractal@ much better agreement with DLC#ere, DLCA refers to
dimensionD calculated using the SO model and that ob-aggregates generated using the standard algorithm of
tained from the computer generated aggregates using stafliffusion-limited cluster-cluster aggregation that involves
dard DLCA algorithms show good agreement. However, théandom aggregation of the polydisperse system of aggregates
aspect ratig which is the divine proportion for analytic cal- [6].)
culations of the SO model, is too h|gh Compared to the one In Sec. I, | introduce the stochastic hierarchical model
for computer generated aggrega8$ (SH mode] and present the numerical results. Section |l

For a two-dimensional lattice the assumptions of the Saoncludes the paper.
model can be stated as folloyB]. (The extension to higher
dimensions is done along similar lings. Il. STOCHASTIC HIERARCHICAL MODEL

(i) It is an on-lattice hierarchical model.

(i) Only side-to-end collisions are allowed. If a cluster is | now introduce our stochastic hierarchical mod&H
circumscribed by a rectangle commensurate with the latticeanode). Instead of a strict hierarchy, as in the SO model, |
the longest edge of this rectangle is the side, and the shortefstllow the following procedure.
edge is the end. At any stage of the hierarchy, all the existing clusters are

(iii) No part of the circumscribing rectangle of a cluster paired. Two clusters in a pair combine to form a new larger
colliding with the side of the circumscribing rectangle of the cluster with probabilityq (sticking probability, while they
second cluster can extend beyond the limits of that side. remain as distinct clusters with probabilipy=1—q. Thusp

(iv) The circumscribing rectangles cannot interpenetrate.is a parameter that represents the strength of the stochastic

Though the SO model gives the correct fractal dimensiorelement in the hierarchy. We also assume that assumptions
for cluster-cluster aggregates, it is based on several assum(k), (iii), and (iv) of the SO model are still valid. Thus |
tions that are not appropriate for the natural and experimentaktain the simplifying features of the SO model, while mak-
situations and also the standard simulations. This is reflecteidg the SH model more realistic in comparison with standard
in the fact that the observed aspect ratio is not in agreememiuster-cluster aggregation. Though analytic calculations are
with that obtained by the SO model. However, the SO modeho longer possible, the numerical simulations are very
is very simple and allows analytic calculation of the fractalsimple. | note that, fop=0, the SH model is the same as the
dimension and aspect ratio. This, coupled with the goodSO model. Figure 1 shows a realization of the SH model
agreement of fractal dimension, prompts one to further instarting with ten particles or monomers.
vestigate the SO model. With the introduction of the stochastic element in the hi-

In the present paper | study the effect of introducing aerarchy, the volumes of the clusters at a given stage are no
stochastic element via the sticking probability, while retain-longer represented by a Fibonnacci series as in the SO model
ing other simplifying features of the SO model. The stochas{8]. Thus | have to rely on numerical calculations for esti-

mating the aspect ratio and fractal dimensjéh
I now present the numerical results. | start whtlusters
*Electronic address: amritkar@prl.ernet.in of single monomers and follow the SH model procedure with
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FIG. 3. Graph of the fractal dimensi@vs the probabilityp for
FIG. 1. Four stages of stochastic hierarchical growth in twoclusters in two dimensions. The fractal dimension shows a maxi-
dimensions leading to a ten-monomer cluster are shown. The stantrum nearp=0.016.
ing point is ten single-monomer clusters.
The figure givies a very surprising and interesting result. As
a givenp to obtain larger clusterslO]. The results are aver- p increases, the fractal dimensidd first increases, goes
aged over several realizations of the stochastic hierarchy fdghrough a maximum ap=0.016, and then decreases mono-
every set of values ok and p. | first consider aggregates tonically. Nearp=0.061, the fractal dimension again has the
generated on a two-dimensional lattice. To calculate the fracsame value as fap=0, i.e., 1.4404.
tal dimension | obtain the average length scafer clusters I now consider another important parameter of the sys-
having the same masa (number of monomejs Here the tem, the aspect rati®, which is the ratio of the larger and
length scale is defined as the larger edge of the circumscritsmaller edges of the circumscribing rectangle. The aspect
ing rectangle. Figure 2 shows the plot mfagainsts for p  ratio is almost independent &f, the number of monomers in
=0.05. The log-log plot is linear over more than three ordersan aggregate, foN>50. Figure 4 shows the plot & as a
of magnitude and the slope of the graph gives the fractalunction of p. There is a monotonic decrease Rfas p in-
dimensionD = 1.442+0.004. The uncertainty i is found creases. Fop=0.061, | haveR=1.53+0.02. The values of
to depend orp. It is negligible neap=0, is +0.0015 near fractal dimension and aspect ratio for DLCA &be=1.44
p=0.015 and increases tar0.004 nearp=0.05, and is *0.03[11,12 andR=1.51+0.06[8], respectively. The cor-
+0.006 atp=0.2. responding values for the SO model d&e=1.44 ... and
Figure 3 shows the fractal dimensiénas a function op. R=1.618....Note the remarkable agreement of the aspect
ratio for the SH model withp=0.061 and DLCA and also

1e+07 | the good agreement of the fractal dimension for the SH
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FIG. 2. Log-log plot of the mass vs the average length scale
of clusters grown using the SH model in two dimensions for
=0.05. The average is taken over 1000 realizations. The solid line FIG. 4. Plot of the aspect ratR vs the probabilityp for clusters
is a straight-line fit and the slope gives the fractal dimendion in two dimensions. The aspect ratio decreases monotonicaly as
=1.442+0.004. increases.
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FIG. 5. Graph of the fractal dimensidhvs the probabilityp for FIQ. 7. The aspect ratiR as a funct_ion of the_numb_er of mono-
clusters in three dimensions. The fractal dimension shows a maxiT"€"s in @ clusteN for DLCA clusters in three dimensions.
mum nearp=0.016 as in the two-dimensional cadég. 2).

maximum lattice size used was 20@00x 200. The log-log

model with both the SO and DLCA models. plot of the radius of gyratiofiy as a function of the number

Now | consider aggregates on a three-dimensional lattice® Monomers per aggregate is linear with inverse of the slope
Figure 5 shows a plot of the fractal dimensibnas a func-  91Ving the fractal dimension 1.8. F|gur_e 7 shows a plot of the
tion of p. Again, as for the two-dimensional case, @in- aspect ratidR versesN. The aspect ratio shows a large fluc-
creasesD first increases, goes through a maximumpat tuation with no dep_endence avh for Iarge_ aggregates. The
~0.016, and then decreases monotonically. Nea0.061, ~2verage aspect ratio B=1.30+0.09, which is lower than
the fractal dimension has the same value, i.e., 1:81804, the value 1.40 for the SH model wii=0.06. Note that the
as forp=0. Note the similarity of the curve with the two- SO model givesR=1.465. Thus the valu®=1.40 for the

dimensional case. The value of fractal dimension for DLCASH model is an improvement over the SO model.
is D=1.80+0.05[13].

Figure 6 shows the plot dR, defined as the ratip .of the IIl. CONCLUSION AND DISCUSSION
largest to the next largest edge of the circumscribing cube
[8], as a function op for aggregates on a three-dimensional | have suggested a simple cluster-cluster aggregation

lattice. There is a monotonic decreaseRofs p increases. model that uses some simplifying features of the SO model
For p=0.061, | haveR=1.40+0.03. To compare this value and a stochastic element for the sticking probability. Though
of the aspect ratio with that for DLCA | have generatedthe model is very simple, the fractal dimension and aspect
aggregates using the algorithm proposed by Mep&nThe  ratio obtained using this model give a good agreement with
that obtained in the standard DLCA in two dimensions. In
1.48 | | | three dimensions the aspect ratio is somewhat higher than the
DLCA value, though it is an improvement over the SO
model. The results establish the importance of stochastic hi-
erarchy in aggregation problems. One might like to conjec-
ture that the simple SH model has picked up the essential
aspects of the cluster-cluster aggregation problem; however,
much more work needs be done before such a conjecture
may be accepted.
An interesting result that | obtain is the peak in the fractal
dimension as a function qf. To the best of my knowledge |
do not know of any other model that gives a peak in the
fractal dimension as a function of the stochastic element. The
exact reason for such a peak is not clear. The aspect ratio
decreases gsincreases. This behavior is natural, sincepas
increases the probability of collisions of clusters having dif-
1.34 L . . ferent sizes increases. In a side-to-end collision, this will lead
0 0.05 0.1 0.15 02 to a decrease in the aspect ratio. The nfaasber of mono-
merg of the resulting cluster, which is an extensive quantity
FIG. 6. Plot of the aspect rati vs the probabilityp for clusters ~ Unlike the aspect ratio, also decreases; but for smathe
in three dimensions. The aspect ratio decreases monotonically asmass does not appear to decrease with the same rate as the
increases. aspect ratio, resulting in a rise in the fractal dimensionpAs
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increases further the mass starts decreasing at a faster ratechastic element introduced pyappears to play an impor-
and the fractal dimension starts dropping. tant role for small values gf in enhancing the fractal dimen-
It is now well accepted that noiger a stochastic element  sion.
can play an important role in the dynamics of many pro-
cesse$14]. One interesting observation is that of stochastic
resonance where noise is known to play a constructive role
in some nonlinear systenf45,16. Our SH model can also The author thanks the International Center for Theoretical
be treated as a dynamical growth model and we see that tHehysics, Trieste, for hospitality.
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