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Stochastic hierarchical model for cluster-cluster aggregation

R. E. Amritkar*
Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India

~Received 19 March 1999!

A stochastic hierarchical model of cluster-cluster aggregation, which is obtained by introducing a sticking
probability into the recently proposed hierarchical model by Sornsen and Oh@Phys. Rev. E58, 7545~1998!#,
is presented. The fractal dimension and aspect ratio calculated using the model give good agreement with those
obtained in standard simulations of cluster-cluster aggregates. An interesting result is that the fractal dimension
shows a peak as a function of the sticking probability.@S1063-651X~99!17310-0#

PACS number~s!: 61.43.Hv, 81.05.Rm
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I. INTRODUCTION

An important mechanism of forming fractal aggrega
that occur in colloids@1# and aerosols@2,3# is cluster-cluster
aggregation. These aggregates are easily generated on a
puter and are able to explain the observed structures rea
ably well @4–7#. Recently, Sorensen and Oh@8# have pro-
posed a very simple and interesting model~SO model! for
diffusion-limited cluster-cluster aggregation~DLCA!. The
model makes several simplifying assumptions that allow
an analytical calculation of the fractal dimension. The frac
dimensionD calculated using the SO model and that o
tained from the computer generated aggregates using
dard DLCA algorithms show good agreement. However,
aspect ratio, which is the divine proportion for analytic ca
culations of the SO model, is too high compared to the o
for computer generated aggregates@8#.

For a two-dimensional lattice the assumptions of the
model can be stated as follows@8#. ~The extension to highe
dimensions is done along similar lines.!

~i! It is an on-lattice hierarchical model.
~ii ! Only side-to-end collisions are allowed. If a cluster

circumscribed by a rectangle commensurate with the latt
the longest edge of this rectangle is the side, and the sho
edge is the end.

~iii ! No part of the circumscribing rectangle of a clust
colliding with the side of the circumscribing rectangle of t
second cluster can extend beyond the limits of that side.

~iv! The circumscribing rectangles cannot interpenetra
Though the SO model gives the correct fractal dimens

for cluster-cluster aggregates, it is based on several assu
tions that are not appropriate for the natural and experime
situations and also the standard simulations. This is refle
in the fact that the observed aspect ratio is not in agreem
with that obtained by the SO model. However, the SO mo
is very simple and allows analytic calculation of the frac
dimension and aspect ratio. This, coupled with the go
agreement of fractal dimension, prompts one to further
vestigate the SO model.

In the present paper I study the effect of introducing
stochastic element via the sticking probability, while reta
ing other simplifying features of the SO model. The stoch
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tic hierarchical model~SH model! presented here leads t
several interesting results. I find that the fractal dimens
first increases and then decreases as the strength of the
chastic element is increased or the sticking probability
creased. On the other hand, the aspect ratio decreases m
tonically as the strength of the stochastic element
increased. Interestingly, as the fractal dimension first
creases and then decreases, and when it has the ori
value, the aspect ratio at that time has the value that is cl
to the correct DLCA value. Thus the stochastic model giv
a much better agreement with DLCA.~Here, DLCA refers to
aggregates generated using the standard algorithm
diffusion-limited cluster-cluster aggregation that involv
random aggregation of the polydisperse system of aggreg
@6#.!

In Sec. II, I introduce the stochastic hierarchical mod
~SH model! and present the numerical results. Section
concludes the paper.

II. STOCHASTIC HIERARCHICAL MODEL

I now introduce our stochastic hierarchical model~SH
model!. Instead of a strict hierarchy, as in the SO mode
follow the following procedure.

At any stage of the hierarchy, all the existing clusters
paired. Two clusters in a pair combine to form a new larg
cluster with probabilityq ~sticking probability!, while they
remain as distinct clusters with probabilityp512q. Thusp
is a parameter that represents the strength of the stoch
element in the hierarchy. We also assume that assumpt
~ii !, ~iii !, and ~iv! of the SO model are still valid. Thus
retain the simplifying features of the SO model, while ma
ing the SH model more realistic in comparison with stand
cluster-cluster aggregation. Though analytic calculations
no longer possible, the numerical simulations are v
simple. I note that, forp50, the SH model is the same as th
SO model. Figure 1 shows a realization of the SH mo
starting with ten particles or monomers.

With the introduction of the stochastic element in the
erarchy, the volumes of the clusters at a given stage are
longer represented by a Fibonnacci series as in the SO m
@8#. Thus I have to rely on numerical calculations for es
mating the aspect ratio and fractal dimension@9#.

I now present the numerical results. I start withk clusters
of single monomers and follow the SH model procedure w
4986 © 1999 The American Physical Society
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a givenp to obtain larger clusters@10#. The results are aver-
aged over several realizations of the stochastic hierarchy
every set of values ofk and p. I first consider aggregates
generated on a two-dimensional lattice. To calculate the fr
tal dimension I obtain the average length scales for clusters
having the same massm ~number of monomers!. Here the
length scale is defined as the larger edge of the circumsc
ing rectangle. Figure 2 shows the plot ofm againsts for p
50.05. The log-log plot is linear over more than three orde
of magnitude and the slope of the graph gives the frac
dimensionD51.44260.004. The uncertainty inD is found
to depend onp. It is negligible nearp50, is 60.0015 near
p50.015 and increases to60.004 nearp50.05, and is
60.006 atp50.2.

Figure 3 shows the fractal dimensionD as a function ofp.

FIG. 1. Four stages of stochastic hierarchical growth in tw
dimensions leading to a ten-monomer cluster are shown. The s
ing point is ten single-monomer clusters.

FIG. 2. Log-log plot of the massm vs the average length scales,
of clusters grown using the SH model in two dimensions forp
50.05. The average is taken over 1000 realizations. The solid l
is a straight-line fit and the slope gives the fractal dimensionD
51.44260.004.
or

c-

b-

s
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The figure givies a very surprising and interesting result.
p increases, the fractal dimensionD first increases, goes
through a maximum atp.0.016, and then decreases mon
tonically. Nearp50.061, the fractal dimension again has t
same value as forp50, i.e., 1.4404.

I now consider another important parameter of the s
tem, the aspect ratioR, which is the ratio of the larger and
smaller edges of the circumscribing rectangle. The asp
ratio is almost independent ofN, the number of monomers in
an aggregate, forN.50. Figure 4 shows the plot ofR as a
function of p. There is a monotonic decrease ofR as p in-
creases. Forp50.061, I haveR51.5360.02. The values of
fractal dimension and aspect ratio for DLCA areD51.44
60.03@11,12# andR51.5160.06@8#, respectively. The cor-
responding values for the SO model areD51.44 . . . and
R51.618 . . . . Note the remarkable agreement of the asp
ratio for the SH model withp.0.061 and DLCA and also
the good agreement of the fractal dimension for the

rt-

e

FIG. 3. Graph of the fractal dimensionD vs the probabilityp for
clusters in two dimensions. The fractal dimension shows a m
mum nearp50.016.

FIG. 4. Plot of the aspect ratioR vs the probabilityp for clusters
in two dimensions. The aspect ratio decreases monotonicallyp
increases.
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model with both the SO and DLCA models.
Now I consider aggregates on a three-dimensional latt

Figure 5 shows a plot of the fractal dimensionD as a func-
tion of p. Again, as for the two-dimensional case, asp in-
creases,D first increases, goes through a maximum atp
.0.016, and then decreases monotonically. Nearp50.061,
the fractal dimension has the same value, i.e., 1.81360.004,
as for p50. Note the similarity of the curve with the two
dimensional case. The value of fractal dimension for DLC
is D51.8060.05 @13#.

Figure 6 shows the plot ofR, defined as the ratio of the
largest to the next largest edge of the circumscribing c
@8#, as a function ofp for aggregates on a three-dimension
lattice. There is a monotonic decrease ofR as p increases.
For p50.061, I haveR51.4060.03. To compare this valu
of the aspect ratio with that for DLCA I have generat
aggregates using the algorithm proposed by Meakin@6#. The

FIG. 5. Graph of the fractal dimensionD vs the probabilityp for
clusters in three dimensions. The fractal dimension shows a m
mum nearp50.016 as in the two-dimensional case~Fig. 2!.

FIG. 6. Plot of the aspect ratioR vs the probabilityp for clusters
in three dimensions. The aspect ratio decreases monotonicallyp
increases.
e.

e
l

maximum lattice size used was 20032003200. The log-log
plot of the radius of gyrationRg as a function of the numbe
of monomers per aggregate is linear with inverse of the sl
giving the fractal dimension 1.8. Figure 7 shows a plot of t
aspect ratioR versesN. The aspect ratio shows a large flu
tuation with no dependence onN for large aggregates. Th
average aspect ratio isR51.3060.09, which is lower than
the value 1.40 for the SH model withp50.06. Note that the
SO model givesR51.465. Thus the valueR51.40 for the
SH model is an improvement over the SO model.

III. CONCLUSION AND DISCUSSION

I have suggested a simple cluster-cluster aggrega
model that uses some simplifying features of the SO mo
and a stochastic element for the sticking probability. Thou
the model is very simple, the fractal dimension and asp
ratio obtained using this model give a good agreement w
that obtained in the standard DLCA in two dimensions.
three dimensions the aspect ratio is somewhat higher than
DLCA value, though it is an improvement over the S
model. The results establish the importance of stochastic
erarchy in aggregation problems. One might like to conj
ture that the simple SH model has picked up the essen
aspects of the cluster-cluster aggregation problem; howe
much more work needs be done before such a conjec
may be accepted.

An interesting result that I obtain is the peak in the frac
dimension as a function ofp. To the best of my knowledge
do not know of any other model that gives a peak in t
fractal dimension as a function of the stochastic element.
exact reason for such a peak is not clear. The aspect
decreases asp increases. This behavior is natural, since ap
increases the probability of collisions of clusters having d
ferent sizes increases. In a side-to-end collision, this will le
to a decrease in the aspect ratio. The mass~number of mono-
mers! of the resulting cluster, which is an extensive quant
unlike the aspect ratio, also decreases; but for smallp, the
mass does not appear to decrease with the same rate a
aspect ratio, resulting in a rise in the fractal dimension. Ap

i-

s

FIG. 7. The aspect ratioR as a function of the number of mono
mers in a clusterN for DLCA clusters in three dimensions.
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increases further the mass starts decreasing at a faste
and the fractal dimension starts dropping.

It is now well accepted that noise~or a stochastic element!
can play an important role in the dynamics of many p
cesses@14#. One interesting observation is that of stochas
resonance where noise is known to play a constructive
in some nonlinear systems@15,16#. Our SH model can also
be treated as a dynamical growth model and we see tha
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stochastic element introduced byp appears to play an impor
tant role for small values ofp in enhancing the fractal dimen
sion.
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